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Abstract

This paper introduces an innovative approach to classification called Credal Deep
Ensembles (CreDEs), namely, ensembles of novel Credal-Set Neural Networks
(CreNets). CreNets are trained to predict a lower and an upper probability bound
for each class, which, in turn, determine a convex set of probabilities (credal set)
on the class set. The training employs a loss inspired by distributionally robust
optimization which simulates the potential divergence of the test distribution from
the training distribution, in such a way that the width of the predicted probabil-
ity interval reflects the ‘epistemic’ uncertainty about the future data distribution.
Ensembles can be constructed by training multiple CreNets, each associated with
a different random seed, and averaging the outputted intervals. Extensive experi-
ments are conducted on various out-of-distributions (OOD) detection benchmarks
(CIFAR10/100 vs SVHN/Tiny-ImageNet, CIFAR10 vs CIFAR10-C, ImageNet vs
ImageNet-O) and using different network architectures (ResNet50, VGG16, and
ViT Base). Compared to Deep Ensemble baselines, CreDEs demonstrate higher test
accuracy, lower expected calibration error, and significantly improved epistemic
uncertainty estimation.

1 Introduction

The quantification of the uncertainty associated with neural network predictions has recently attracted
increasing attention, to enhance the reliability and robustness of neural networks. Researchers agree
to distinguish aleatory uncertainty (AU) from epistemic uncertainty (EU): the former arises from the
inherent randomness, e.g., data noise, and is irreducible. The latter is caused by a lack of knowledge
about the process which generates the data, due to the limited availability of training data, and is
reducible [1, 36]. Effective EU quantification is beneficial for out-of-distribution (OOD) detection
[30, 54] and can contribute to a variety of safety-critical applications, including autonomous driving
[21], medical diagnosis [44], flood uncertainty estimation [10], structural health monitoring [72].

In classification, standard neural networks (SNNs) whose predictions amount to single probability
distributions are unable to account for epistemic uncertainty, because a single distribution assumes
precise knowledge about the dependency between inputs and outputs. To properly capture the EU, the
network’s outcome needs to express the uncertainty about a prediction’s uncertainty itself [35, 62].

The most well-known approach to EU quantification in deep learning leverages Bayesian neural
networks (BNNs) [7, 22, 38]. BNNs model network parameters as distributions and thus predict a
‘second-order’ distribution (i.e., a distribution of distributions) [36], although in practice predictions
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are often generated by running the network on sample parameters extracted from a posterior. While
efficient training techniques (such as sampling [33, 57] and variational inference [7, 22]) have been
developed to mitigate their complexity, practical challenges persist for BNNs, including the scaling
to large datasets, handling complex network architectures, and real-time applicability [54].

An alternative approach, called Deep Ensembles (DEs), handles uncertainty quantification by aggre-
gating multiple individually-trained SNNs [43], so that predictions amount to finite sets of probability
distributions over the classes. DEs, often viewed as an approximation of Bayesian model averaging
(BMA) [38], have become a powerful baseline for uncertainty estimation [2, 25, 53, 54, 60]. However,
empirical evidence [2] suggests that DEs could yield relatively low-quality estimates of epistemic
uncertainty. Further, DEs lack a sound theoretical justification [27, 47].

Credal inference [13, 36, 62] (which predicts convex sets of probability distributions or credal
sets [46] on the target space) can provide an alternative way of quantifying epistemic uncertainty.
Credal representations have been extensively studied within the broader field of machine learning,
including, e.g., the naive credal classifier [14], the notion of credal network [13] or credal random
forest classification [65]. ‘Imprecise’ BNNs have been recently introduced which model both network
weights and predictions as credal sets [8]. While these models demonstrate robustness in Bayesian
sensitivity analysis, their computational complexity is on a par with that of ensembles of BNNs,
significantly limiting their practical applicability.

Novelty and Main Contributions. This paper presents an innovative approach to classification
tasks called Credal Deep Ensembles (CreDEs), ensembles of novel Credal-Set Neural Networks
(CreNets), aiming to improve EU quantification in the framework of credal inference. At the cost
of merely doubling the number of output nodes compared to classical SNNs, CreNets are trained to
predict a lower and an upper probability bound for each class rather than a single probability value.
Such probability intervals over classes thus efficiently determine a prediction in the form of a credal
set. The training strategy is inspired by Distributionally Robust Optimization [42, 55, 61], which
simulates the potential divergence of the test distribution from the training distribution. As a result,
the width of the predicted probability interval reflects the ‘epistemic’ uncertainty about the future
data distribution. Adopting an ensemble strategy, CreDEs derive the final prediction by averaging the
probability intervals outputted by the members of the ensemble. A conceptual comparison between
CreDEs and DEs is illustrated in Figure 1.

Extensive experimental validation is conducted on several OOD detection benchmarks, including CI-
FAR10/100 (ID) vs SVHN/Tiny-ImageNet (OOD), CIFAR10 (ID) vs CIFAR10-C (OOD), ImageNet
(ID) vs ImageNet-O (OOD), and across different network architectures: ResNet50, VGG16 and
Visual Transformer Base (ViT Base). Compared to traditional Deep Ensembles, our CreDEs achieve
higher test accuracy and lower expected calibration error (ECE) on ID samples, and significantly
improve the quality of EU estimation.
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Figure 1: Comparison between the proposed Credal Deep Ensembles and traditional Deep Ensem-
bles. The former aggregate a collection of credal set predictions from CreNets as the final (credal)
prediction, whereas the latter average a set of single probability distributions from standard SNNs as
the outcome. E.g., in the probability simplex [16] associated with the target space Y={A,B,D}
(the triangle in the figure), a probability vector (qA, qB , qD) is represented as a single point. For each
CreNet, the predicted lower and upper probabilities of each class act as constraints (parallel lines)
which determine a credal prediction (in gray). Single credal predictions are aggregated as in Sec. 2.4.

Related Work Besides BNNs, DEs, and credal inference, other ‘second-order’ uncertainty estimation
approaches exist, such as Dirichlet-based methods [9, 48, 49, 50, 63], in which predictions are
represented as Dirichlet distributions. One significant challenge for the latter is the absence of ground
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truth labels. Although various loss functions have been proposed, these models’ performance often
diverges from theoretical EU assumptions [71]. Another rationale for the exclusion of Dirichlet-based
approaches as baselines for our CreDE work is that such models often necessitate the inclusion
of OOD data during training [48, 49, 56]. This challenges their practical adaptability, as it cannot
guarantee their robustness against other forms of ‘unseen’ OOD data [71]. Moreover, a recent
study [39] has shown that these methods often fail to capture the EU properly, making the resulting
measures difficult to interpret quantitatively.

Paper Outline The remainder of this paper is structured as follows. Sec. 2 presents our CreNets and
CreDEs in full detail. Sec. 3 describes the experimental validations and results. Sec. 4 summarizes our
conclusions and future work. Appendices report mathematical proofs in §A, additional experiments
in §B, implementation details in §C, the analysis of alternative ensemble strategies for CreDEs in
§D, and further discussion on future work in §E (including achieving statistical guarantees using
conformal learning and the framework’s extension to regression), respectively.

2 Approach

The proposed Credal-Set Neural Network architecture and forward propagation are introduced in
Sec. 2.1. CreNets’ training procedure is discussed in Sec. 2.2. The class prediction and uncertainty
quantification are discussed in Sec. 2.3. Credal Deep Ensembles are presented in Sec. 2.4.

2.1 Credal-Set Neural Networks

Architecturally, our CreNet design focuses only on the final classification layers, and
can therefore be applied on top of any representation layers of neural network models.
The final layers of a CreNet (Figure 2) first output a deterministic interval for each
class, using for each class an output node associated with the interval midpoint m and
one associated with its half-length h, respectively (a total of 2C nodes for C classes).
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Figure 2: CreNet final layer structure for three
classes.

Let z be the input vector to the final layer.
CreNets compute m and h (the vectors col-
lecting interval midpoints and half-lengths for
all classes) as:

m=g(W1:C ·z+b1:C)

h=ζ(WC+1:2C ·z+bC+1:2C)
, (1)

where W1:C , b1:C ,WC+1:2C , bC+1:2C are the
weights and biases associated with the first C
and the remaining C nodes, respectively. Here
g(·) is an arbitrary activation function and ζ(·)
denotes the Softplus function [79] that ensures
the non-negativity of h.

The deterministic intervals associated with all classes, denoted as [aL,aU ] :={[aLi , aUi ]}Ci=1, can
then be obtained as [aL,aU ]=[m−h,m+h].

A proper mapping from such deterministic intervals [aL,aU ] to a collection of probability intervals
[qL, qU ] :={[qLi , qUi ]}Ci=1 for each class needs to ensure that [qL, qU ] satisfies the conditions:

qLi≤qU i ∀i=1, ..., C and
∑C
i=1 qLi ≤ 1≤

∑C
i=1 qUi . (2)

The former condition guarantees a proper [qLi , qUi ] for each class. The latter enables the resulting
collection of probability intervals to determine a non-empty credal set, Q, as follows [52]:

Q={q |qi∈ [qLi , qUi ];
∑C
i=1 qi=1}. (3)

The probability vectors in Q meet the normalization condition, and their probability value per class
is constrained by the probability intervals (Eq. (2)).

Traditional SoftMax activation cannot ensure that the convexity conditions in Eq. (2) are met when
computing [qL, qU ] using qL=SoftMax(aL) and qU =SoftMax(aU ), respectively. A toy example
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is given in Appendix §A. Therefore, we employ Interval SoftMax activation as proposed in [75] to
compute [qL, qU ] from [aL,aU ], as follows:

qLi=
exp(aLi)

exp(aLi)+
∑
k 6=iexp(

aUk+aLk
2 )

, qU i=
exp(aUi)

exp(aUi)+
∑
k 6=iexp(

aUk+aLk
2 )

, (4)

where qLi and qUi are the lower and upper probability bound for the ith class, respectively. As proven
in Appendix §A, the probability intervals generated by the Interval SoftMax duly satisfy Eq. (2).

2.2 Training Procedure

The rationale for the training of a CreNet is for the predicted lower and upper bounds (Eq. (4)) to the
probability of the classes, qL and qU , to express the epistemic uncertainty (induced by the limited
size and variability of the training set) about how different the distribution of future test data may be
from that of the training data.

To this extent, we designed a composite loss function with two components: one, which applies
classical cross entropy to the upper probability vector, encourages the latter to optimistically assume
that test data distribution will be similar. The other, inspired by Distributionally Robust Optimization
(DRO) [42, 55, 61], pushes the lower probability to reflect a ‘pessimistic’ stance on future distri-
butional divergence. The width of the resulting interval will thus reflect the epistemic uncertainty
associated with the prediction.

We first contrast the classical training strategy with that of Distributionally Robust Optimization in
Sec. 2.2.1. We then delve into the design and implementation of our CreNet loss in Sec. 2.2.2.

2.2.1 Classical and DRO Training Strategy

Vanilla Strategy Given a training set D={xn, tn}Nn=1, the conventional neural network training
process aims to solve the following optimization problem

minimize
θ∈Θ

{
1

N

∑N

n=1
L((xn, tn),θ)

}
, (5)

where θ denotes the model’s trainable parameters in the space Θ and L denotes an arbitrary loss
function. The underlying assumption is that the training and test distributions are identical. As a
result, the trained network serves as an empirical risk minimizer [36]. However, this ideal assumption
often results in over-optimistic predictions because the test observations may, in practice, significantly
differ from the training data [34].

DRO Strategy In contrast to the vanilla strategy, the objective of DRO [6, 20] is to minimize the
worst-case expected risk (R(θ)) over an uncertain set of distributions U , as follows:

minimize
θ∈Θ

{
R(θ)

.
= sup
U∈U

E(x,t)∼UL((x, t),θ)

}
, (6)

in which E is the expectation operation. In practice, a group DRO setting [59] is adopted in which the
training distribution P is assumed to be a mixture of m groups Pg , indexed by g ∈ G = {1, 2, ...,m}.
Because the optimum of a linear program is attained at a vertex, the worst-case risk in Eq. (6) is
equivalent to a maximum over the expected loss of each group, as follows:

R(θ) = maximize
g∈G

E(x,t)∼PgL((x, t),θ). (7)

In practice, the group DRO model minimizes the empirical worst-group risk R̂(θ), namely:

minimize
θ∈Θ

{
R̂(θ)

.
= maximize

g∈G
E(x,t)∼P̂gL((x, t),θ)

}
, (8)

where P̂g is the empirical distribution of the g-th group of training points. Therefore, group DRO
learns models with good worst-group training loss across groups [59]. One special form of group
DRO is adversarially reweighted learning [42], which consists of a minimax game between a learner
and adversary. The learner optimizes for the main classification task and aims to learn the best
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parameters θ that minimize the expected loss. In contrast, the adversary maximizes the expected
loss by making an adversarial assignment of weights wn, collected in a vectorw. Consequently, the
training optimization problem assumes the form

minimize
θ∈Θ

{
maximize

w∈S

1

N

∑N

n=1
wn ·L((xn, tn),θ)

}
, (9)

where the set S of weight vectors varies across different implementations [42, 55, 61].

2.2.2 CreNet Loss Design and Implementation

Design As anticipated, the CreNet training process applies the vanilla training strategy to the upper
probability prediction vector qU (Eq. (5)), and the DRO strategy to the lower probability prediction
qL (Eq. (9)). The resulting overall loss function has a composite structure

LCreNet :=
1

N

∑N

n=1
CE(qUn , tn)︸ ︷︷ ︸

Vanilla Component

+ maximize
w∈S

1

N

∑N

n=1
wn·CE(qLn , tn)︸ ︷︷ ︸

DRO Component

, (10)

where CE denotes the classical cross-entropy loss function used in classification. Given a predicted
discrete probability vector q and the ground-truth label t, CE is defined as: CE :=−

∑C
k tk · log2 qk.

The vanilla component is applied to the upper probability vector qU because such a loss takes the
training distribution at face value and is thus more likely to encourage ‘optimistic’ (overconfident)
or ‘upper bound’ predictions for the class scores. The DRO component is computed on the lower
probability vectors qL, as it weighs training outliers to simulate future differences in data distribution
at test time, encouraging ‘pessimistic’ or ‘lower bound’ class score predictions. Thus, the width of
the resulting probability interval will reflect the uncertainty associated with the model’s ignorance of
how much the future test distribution will differ from the train distribution, using the boundary/outlier
cases observed at training time to guess what the uncertainty on future test cases will be.

Cross-Entropy of Lower/Upper Probability Vectors Please note that in Eq. (10), the CE is applied
to lower/upper probability vectors, which are not (normalized) probability vectors. However, as the
ground truth (label) vector t equals 1 for the true class j∗ and 0 for all the other elements, calculating
CE(q, t) for any predicted probability vector q reduces to − log2 q(j

∗). Consequently, all probability
vectors with the same component for the true class will generate the same CE for that sample.

The consequence for CreNet training is that feeding a lower (upper) probability vector qL (qU ) to Eq.
(10) is equivalent to computing the CE with any one of the probability vectors in the credal prediction
(Eq. (3)) whose probability for the true class j∗ equals the lower (upper) probability value there. It
can be shown that these form one of the ‘faces’ of the boundary of the credal set.

Importantly, because of the functional structure of Interval SoftMax activation (Eq. (4)), upper
and lower probability vectors are not computed independently, but are correlated. Thus, they are
minimized together via the total loss (Eq. (10)), with the DRO component also influencing the upper
probability qU , driving the solution away from the trivial one (all-ones upper probability vectors).

Implementation As the S of weight vectors in Eq. (10) varies across different implementations
[42, 55, 61] and estimating w in Eq. (10) is not straightforward when using batch-wise training
[34], we resort to a simpler heuristic proposed by [34]. For each training batch, only the δ∈ [0.5, 1)
portion of samples with the highest cross-entropy with the lower probability vector (CE(qLn , tn))
are selected to compute the DRO component of the loss. As a result, wn>1 is implicitly set in Eq.
(10) for selected samples while wn=0 for deselected samples.

The underlying rationale is the following. Within a batch of samples, those instances that demonstrate
high losses are identified as ‘hard-to-learn’ samples, essentially representing the ‘minority group’
within a training dataset [34]. Setting a value δ thus identifies what fraction of the training points is
chosen to represent potential future domain shifts at test time. A smaller δ signifies a more cautious
approach, in which even a few training outliers can indicate future challenges.

The lower bound to the design range for δ is 0.5 because we empirically observed that values of δ <
0.5 may destabilize the training process, as a too-large averaged loss is returned for backpropagation.
When δ approaches 1, the data distribution of the samples considered by the vanilla and the DRO
components of the loss becomes similar, implicitly assuming a less pronounced divergence between
train and test distributions. The corresponding predicted probability intervals become narrower. If δ
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were theoretically set to 1, all samples would be selected for backpropagation, implying that wn=1
for any n in Eq. (10). Consequently, the loss in Eq. (10) would be the sum of the vanilla component
on qU and the vanilla component on qL. Empirically, we observed that this leads to a collapse of the
upper and lower probability bounds to single values.

The implementation of the CreNet training procedure is shown in Algorithm 1.
Algorithm 1 CreNet Training Procedure

Input: Training dataset D={xn, tn}Nn=1; Portion of samples per batch δ∈ [0.5, 1); Batch size η
while enable training do

1. Compute CE(qUn , tn) and CE(qLn , tn) for each sample
2. Sort the sample indices (m1, ...,mη) in descending order of CE(qLn , tn)
3. Define ηδ = bδηc
4. Minimize LCreNet =

1
η

∑η
n=1 CE(qUn , tn)+ 1

ηδ

∑ηδ
j=1 CE(qLmj , tmj )

end while

2.3 Class Prediction and Uncertainty Quantification

Class Prediction For the class prediction we employ the ‘maximin’ and ‘maximax’ criteria [66]:

îmin :=argmax
i

q∗Li ; îmax :=argmax
i

q∗Ui , (11)

which output (respectively) the class indices with the highest lower and upper reachable probability
(q∗Li and q∗Ui) within the same credal set induced by the predicted lower and upper probabilities
qLi , qUi . Figure 3 illustrates how the lower and upper probabilities qLi , qUi that determine the credal
set Q may differ from the probabilities q∗Li and q∗Ui actually reachable for each class within Q. The
reachable lower and upper probabilities for class i can be easily obtained as follows [17]:

q∗Ui=min

(
qUi , 1−

∑
j 6=i

qLj

)
, q∗Li=max

(
qLi , 1−

∑
j 6=i

qUj

)
. (12)

Uncertainty Quantification Given a credal set prediction, upper and lower entropies generalizing
Shannon’s entropy, denoted as H(Q) and H(Q), can be defined which may serve as measures for
TU and AU, respectively [3, 36].

Computing H(Q) boils down to solving the following optimization problem:

H(Q)=maximize
∑C

i=1
−qi ·log2 qi s.t. q∗Li≤qi ≤ q

∗
Ui∀i and

∑C

i=1
qi=1. (13)

This seeks the highest entropy value of a probability distribution within the predicted credal set Q.
H(Q), for which maximize is replaced by minimize, searches for the minimal such entropy. Such
optimization problems can be addressed using a standard solver, e.g., the SciPy optimization package
[73]. Epistemic uncertainty can then be quantified as H(Q)−H(Q) [36].

Computational Complexity Reduction To reduce the computational complexity of Eq. (13) for
a large value of C (e.g., C = 1000), we propose an original approach called Probability Interval
Dimension Reduction (PIDR) in Algorithm 2. This method first identifies the K−1 classes with the
highest lower probability values, then merges the remaining elements into a single class with the
associated upper and lower probability calculated using Eq. (12). Consequently, the dimension of the
probability interval is reduced from C to K.

2.4 Credal Deep Ensembles

Inspired by conventional DEs [43], the final step of our approach is to introduce Credal Deep
Ensembles (CreDEs). CreDEs aggregate M individually trained CreNets and predict the aggregated
probability intervals, denoted as [q̃∗L, q̃

∗
U ], as follows:

q̃∗L=
1

M

∑M

m=1
q∗Lm , q̃

∗
U =

1

M

∑M

m=1
q∗Um , (14)

where [q∗Lm , q
∗
Um

] is the set of reachable probability intervals predicted by the m-th CreNet. Eq. (20)
in Appendix D proves that [q̃∗L, q̃

∗
U ] satisfies the convexity condition in Eq. (2) for constructing a
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Algorithm 2 Probability Interval Dimension Reduction Algorithm
Input: [q∗L, q

∗
U ]; Chosen number of classes K

Output: Reduced-dimensional probability intervals [rL, rU ]
1. Index vector of q∗L in descending order: l←argsort(q∗L)
2. Define the upper and lower probability per selected class:
rLj←q∗Llj

, rUj←q∗Ulj
for j=1, ...,K−1

3. Define upper and lower probability for deselected classes:
rLK←max(1−

∑lC
i=lK

q∗Ui ,
∑K−1
j=1 rLj );

rUK←min(1−
∑lC
i=lK

q∗Li ,
∑K−1
j=1 rUj )

𝑞!!

𝑞!!
∗

Figure 3: If intervals are redun-
dant, some of the (e.g.) upper
probabilities qUA may not be ac-
tually reachable in the credal set
that results from the intersection
of all interval constraints.

non-empty credal set. Therefore, class prediction and uncertainty estimation as described in Sec.
2.3 apply to CreDEs. We discuss the rationale for averaging strategy and the alternative ensemble
approaches for CreDEs in Appendix §D.

3 Experimental Validation

Setup We assessed CreDEs through OOD detection benchmarks across various dataset pairings
(ID vs OOD samples), including CIFAR10 [41]/CIFAR100 [40] vs SVHN [31]/Tiny-ImageNet
[45], CIFAR10 vs CIFAR10-C [29], ImageNet [18] vs ImageNet-O [31]. We trained 15 CreNets
(using δ=0.5) and SNNs on the ResNet50 architecture [28] starting from different random seeds,
using the training set as per the ID dataset in the pair. Following this, we constructed 15 dif-
ferent CreDEs and DEs, respectively, by randomly selecting five members from the pool of 15
trained models. The same ensemble member lists are used for both DEs and CreDEs, with each
ensemble strictly guaranteed to be distinct. More details are given in Appendix §C. Codes are
available at https://gitlab.kuleuven.be/m-group-campus-brugge/distrinet_public/
credal-deep-ensembles.git.

Uncertainty Quantification in DEs Total uncertainty (TU) can be quantified in DEs via the Shannon
entropy (H) of the averaged predicted distribution. The AU, on the other hand, can be obtained by
averaging the entropies of the predictions of each ensemble member [2, 36]. Namely,

TU :=H(q̃)=H( 1
M

∑M
m=1 qm), AU :=H̃(q)= 1

M

∑M
m=1H(qm), (15)

where M is the number of networks, q̃ and qm denote the average probability vector and the
single probability vector of the m-th SNN model, respectively. The level of epistemic uncertainty,
representing an approximation of mutual information [36], can be obtained as EU :=H(q̃)−H̃(q).

Test Accuracy and ECE on ID Samples We evaluated the test accuracy and expected calibration
error (ECE) [24, 58] of CreDEs-5 and DEs-5 on the test set of each ID dataset. A lower ECE value
signifies a closer alignment between the model’s confidence scores and the true probabilities of the
events. Since ECE is designed for a singular probability vector, we implemented a compromise
calculation as follows. Suppose our model predicts the class indices k and j when using the îmin

and îmax criteria, respectively, ECE values are then computed based on the associated lower q∗Lk and
upper q∗Uj reachable probabilities in the credal set.

Table 1 reports the test accuracy and ECE for DEs-5 and CreDEs-5 on the various datasets, indicating
that our CreDEs-5 achieved higher test accuracy and lower ECE on ID samples. Note that employing
the îmin prediction showed higher ECE on the challenging ImageNet dataset. This is likely because
the strategy, selecting the class with the highest lower reachable probability, is a conservative one.

Table 1: Test accuracy (%, ↑) and ECE (↓) of DEs-5 and CreDEs-5 using CIFAR10, CIFAR100, and
ImageNet as ID datasets over 15 runs. The better performance is marked in bold.

CIFAR10 CIFAR100 ImageNet

Test Accuracy ECE Test Accuracy ECE Test Accuracy ECE

DEs-5 93.32±0.13 0.0131±0.0010 75.80±0.28 0.0392±0.0027 77.92±0.02 0.2415±0.0009

îmin 93.75±0.11 0.0092±0.0016 79.54±0.21 0.0366±0.0025 78.41±0.02 0.5930±0.0006CreDEs-5
(Ours) îmax 93.74±0.11 0.0108±0.0017 79.65±0.19 0.0268±0.0023 78.51±0.02 0.1685±0.0004
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Table 2: OOD detection AUROC and AUPRC performance (%, ↑) between CreDEs-5 and DEs-5
based on ResNet50 using EU as uncertainty metrics on CIFAR10/100 vs. SVHN/Tiny-ImageNet and
ImageNet vs. ImageNet-O. Results are averaged over 15 runs. Best results in bold.

ID Samples CIFAR10 CIFAR100 ImageNet

OOD Samples SVHN Tiny-ImageNet SVHN Tiny-ImageNet ImageNet-O

Performance Indicator AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

DEs-5 H(q̃)−H̃(q) 89.58±0.93 92.29±1.00 86.87±0.20 83.02±0.16 73.83±1.97 84.96±1.25 78.80±0.20 74.68±0.27 65.03±0.53 62.77±0.38

CreDEs-5 H(Q)−H(Q) 96.55±0.25 98.17±0.17 88.10±0.26 87.85±0.35 78.55±1.15 86.57±0.65 82.54±0.26 77.60±0.44 67.82±0.06 62.80±0.12

EU Quantification for OOD Detection It is our hypothesis that OOD data express a higher
EU. Hence, we can use a better EU quantification as the means to improve the OOD detec-
tion [54]. Thus, superior OOD detection performance provides compelling evidence of en-
hanced uncertainty estimation quality. For the OOD detection performance assessment, we

𝐻 ℚ − 𝐻(ℚ)(Ours) 𝐻 𝒒+ − 𝐻, 𝒒

Figure 4: OOD detection (CIFAR10 vs
CIFAR10-C) over increased corruption intensity.

employed AUROC (Area Under the Re-
ceiver Operating Characteristic curve) and
AUPRC (Area Under the Precision-Recall
curve) scores. AUROC captures true and
false positive rates, while AUPRC assesses
precision and recall trade-offs, offering valu-
able insights into model effectiveness across
various confidence levels. When calculat-
ing H(Q) and H(Q) in the ImageNet vs
ImageNet-O experiment, we employed our
PIDR Algorithm 2 with K = 20. Table 2
reports the OOD detection performance of
CreDEs-5 and DEs-5 in the CIFAR10/CIFAR100 vs SVHN/Tiny-ImageNet, and ImageNet vs
ImageNet-O settings. As the CIFAR10-C dataset contemplates data from CIFAR10 corrupted in 15
distinct ways, each with 5 different intensities, Figure 4 presents averaged AUROC and AUPRC
scores for OOD detection on CIFAR10 vs CIFAR10-C across types of corruption, against the intensity
of corruption. Table 2 and Figure 4 confirm CreDEs-5’s superior OOD detection performance over
DEs-5. This indicates the effectiveness of CreDEs in improving the EU quantification quality, using
H(Q)−H(Q) as the uncertainty measures.

Qualitative Evaluation Due to the high dimensionality, visualizing or directly computing the size of
the credal set becomes challenging as C increases. Consequently, we indirectly evaluate whether our
CreDEs consistently generate nearly Dirac credal sets as predictions through the maximum attainable
upper bound probability of the prediction. The closer this probability is to 1, the more it approximates
a Dirac credal set. Figure 5 shows the results of ResNet50-based CreDEs-5 for the CIFAR10, SVHN,
and Tiny-ImageNet datasets. It verifies that our method does not consistently generate nearly Dirac
credal sets, especially for OOD samples. For CIFAR10, a substantial proportion of (but not all)
the credal sets are quasi-Dirac. This observation is reasonable as it is consistent with the high test
accuracy of CreDEs and the low ECE reported in Table 1.

CIFAR10 SVHN Tiny-ImageNet

Figure 5: Maximum reachable upper probability max (q∗U1
, ..., q∗UC ) per sample from 15 runs.

Additionally, Figure 6 shows the reliability diagram[24] of the ResNet50-based DEs-5 and CreDEs-5
on the CIFAR10 dataset, demonstrating better calibration performance of our CreDEs. Figure 7
showcases the EU estimation plots for these models. Although the EU estimates for DEs-5 and
CreDEs-5 are not directly comparable due to differing representations, CreDEs-5 demonstrates
significantly higher EU estimates for OOD samples, as observed qualitatively.

Ablation Study on Various Network Architectures We also performed an ablation study on network
backbones different from ResNet50, including VGG16 [67] and Vision Transformer Base (ViT Base)
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𝚤̂!"#(CreDEs-5)
ECE: 0.8110#10$%

𝚤̂!&'(CreDEs-5)
ECE: 0.9434#10$%

DEs-5
ECE: 1.4582#10$%

Figure 6: Reliability diagram of ResNet50-based DEs-5 and
CreDEs-5 (using îmin and îmax, respectively) on CIFAR10.

CIFAR10 (ID)
SVHN (OOD)
Tiny-ImageNet (OOD)

Figure 7: EU estimates compari-
son of ResNet50-based models.

[77]. Table 3 reports the test accuracy and ECE of CreDEs-5 and DEs-5 on the CIFAR10 test set
(representing ID samples) and the OOD detection performance on CIFAR10 vs SVHN/Tiny-ImageNet.
Figure 8 compares OOD detection performance in the CIFAR10 vs CIFAR10-C setting against
the intensity of corruption, using both AUPRC and AUROC as metrics. The results consistently
demonstrate that CreDEs achieve higher test accuracy, lower ECE, and significantly improved
epistemic uncertainty estimation, leading to enhanced OOD detection performance.

Table 3: Test accuracy (%, ↑) and ECE (↓) of DEs-5 and CreDEs-5 on CIFAR10 as ID dataset (left).
AUROC and AUPRC scores (%, ↑) for OOD detection on CIFAR10 vs SVHN/Tiny-ImageNet (right).
Results averaged over 15 runs. The Best results are in bold.

CIFAR10 (ID) CIFAR10 vs SVHN CIFAR10 vs Tiny-ImageNet

Test Accuracy ECE AUROC AUPRC AUROC AUPRC

DEs-5 85.53±0.10 0.0815±0.0011 H(q̃)−H̃(q) 82.19±0.82 87.52±0.81 78.58±0.15 73.28±0.23

îmin 87.94±0.11 0.0203±0.0014VGG16 CreDEs-5
(Ours) îmax 87.92±0.11 0.0611±0.0012 H(Q)−H(Q) 87.68±0.73 93.47±0.57 82.56±0.28 80.81±0.52

DEs-5 90.43±0.97 0.0181±0.0019 H(q̃)−H̃(q) 77.71±1.67 88.73±0.32 82.27±0.79 78.85±0.81

îmin 93.60±0.40 0.0107±0.0014ViT Base CreDEs-5
(Ours) îmax 93.59±0.39 0.0104±0.0012 H(Q)−H(Q) 88.57±2.08 93.24±1.25 88.73±0.32 87.84±0.52

VGG16 ViT Base
𝐻 ℚ − 𝐻(ℚ)(Ours) 𝐻 𝒒+ − 𝐻, 𝒒

Figure 8: OOD detection on CIFAR10 vs CIFAR10-C against increased corruption intensity, using
VGG16 and ViT Base as backbones.

Ablation Study on Hyperparameter δ for CreNet Training In our main evaluation, we set
by default δ = 0.5 to reflect a balanced assessment of the train-test divergence and show how
such a value allows our model to outperform the baselines. Table 4 reports the test accuracy and
OOD detection performance (using EU estimates) of CreDEs-5 under various values of δ. The

Table 4: Test accuracy (%, ↑) and OOD detection
performance (%, ↑) of CreDEs-5 using various δ.
Results are averaged over 15 runs.

δ 0.5 0.625 0.75 0.875 0.9375 0.96875

Test Accuracy
(CIFAR10)

îmax 93.74 94.54 94.47 94.57 93.88 93.99
îmin 93.75 94.55 94.47 94.56 93.87 93.99

SVHN
(OOD Detection)

AUROC 97.44 97.44 97.92 97.95 97.42 97.51
AUPRC 93.07 96.34 97.00 96.92 98.79 98.82

Tiny-ImageNet
(OOD Detection)

AUROC 88.28 89.01 89.10 89.18 89.85 89.24
AUPRC 88.13 89.81 89.76 89.72 89.18 89.26

ablation findings verify the robustness of Cre-
DEs across hyperparameter setups and indicate
the δ = 0.5 might be too pessimistic a choice
in CIFAR10 settings. Performance peaks at
δ=0.875 in most cases, implying that δ=0.875
may provide the ‘optimal’ estimate of how test
and train sets diverge for CIFAR10. One pos-
sible way to find the ‘best’ δ in practice is to
conduct standard cross-validation on specific
test scenarios. However, the method is not par-
ticularly sensitive to this hyperparameter. Per-
spectively, an interesting option, in the presence of multiple datasets (e.g.acquired over time in a
continual learning setting), could be applying the DRO loss component to different components of
the training set, and assessing the results to robustly select δ.

We also report the average EU estimation values of CreDEs-5 for each dataset in Table 5. In-
creasing the value of δ (i.e., giving less importance to the divergence between test and training
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distributions) leads to a decreasing trend in the average EU estimates per dataset (particularly for
ID CIFAR10 samples). This aligns with the intuition that, if the model is more uncertain about

Table 5: Averaged EU estimates of CreDEs-5 using
various δ.

δ 0.5 0.625 0.75 0.875 0.9375 0.96875

CIFAR10 0.3557 0.0611 0.0586 0.0572 0.0222 0.0215

SVHN 1.6093 0.2450 0.2553 0.2593 0.1612 0.1574
Tiny-ImageNet 1.4996 0.2030 0.1957 0.1970 0.1025 0.1005

the divergence of the distributions (smaller δ),
it should express a larger EU. Despite smaller
uncertainty values at high δ’s, the difference
between ID and OOD samples remains notice-
able. This explains why a δ closer to 1 does
not always lead to low-performance OOD de-
tection and why our model’s OOD detection
performance is robust against the choice of δ.

Model Inference Complexity Table 6 reports the parameter count and inference cost on one NVIDIA
A100-SXM4-40GB GPU for a single SNN and CreNet on ImageNet. CreNets show a marginal
increase in complexity due to its minor architectural modifications. More discussions on the inference
and training complexity are presented in Appendix §C.

Additional Experiments Appendix §B.1 discusses the implementation and performance of
EU quantification in CreDEs when using a different uncertainty measure for credal sets (the
generalized Hartley measure [4, 36]). The results demonstrate that our CreDEs consistently
enhance the quality of EU quantification, exhibiting robustness against different measures.

Table 6: Model complexity of a ResNet50-based
SNN and CreNet on ImageNet dataset.

Model Parameters (million) Inference time per sample (ms)

SNN vs CreNet 25.557 vs 27.606 5.5±0.2 vs 5.7±0.3

Appendix §B.2 reports an ablation study for the
hyperparameter K of our PIDR Algorithm 2,
which shows the effect of K on CreDEs’s uncer-
tainty quantification and time cost. Appendix
§B.3 assesses the ability of CreDEs to evaluate
total uncertainty (TU) (as opposed to EU) in OOD detection, suggesting that our CreDEs also achieve
an improved TU estimation, compared to DEs. Appendices §B.4, §B.5, and §B.6 compare the
uncertainty quantification abilities of CreDEs versus those of traditional DEs that also apply the
DRO strategy, DEs that apply the ‘product of experts’ [32] ensemble setting, several BNN baselines,
respectively. CreDEs continue to demonstrate superior performance in uncertainty estimation. Ap-
pendix §B.7 assess CreDEs in a case study involving active learning [23, 54]. All these additional
experiments demonstrate that our CreDEs deliver improved uncertainty quantification.

4 Conclusion

Conclusion In this paper, we introduced a novel Credal-Set Neural Network (CreNet) for classi-
fication tasks. Given any given input instance, CreNet is designed to predict a lower and an upper
probability for each class, rather than a single probability value, thus providing an efficient and
effective implementation of credal inference. We also proposed Credal Deep Ensembles (CreDEs),
ensembles of CreNets, which extend the traditional deep ensemble idea to the credal domain. Ex-
tensive experimental validation was conducted on several OOD detection benchmarks, and across
different network architectures and uncertainty measures. Compared to traditional Deep Ensembles,
our CreDEs achieve higher test accuracy and lower ECE on ID samples, while significantly improving
the quality of EU and TU estimation, leading in turn to strongly enhanced OOD detection perfor-
mance. Hence, we believe our work can potentially improve neural network safety and reliability,
and have wide applicability to real-world scenarios such as medical image analysis.

Limitation Despite the superior performance of CreDEs, neither traditional DEs nor CreDEs may be
desirable when memory usage is stringent and computational resources are limited.

Future Work Three essential objectives of our future research include elaborating on statistical
coverage guarantees of our CreDEs (outlined in Appendix §E.2), extending our framework to
regression tasks (a roadmap is provided in Appendix §E.3), and assessing our CreDEs alongside other
uncertainty-aware models in real-world applications comprehensively, like medical image analysis.
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A Mathematical Proof

Toy Problem for Unavailability of Traditional SoftMax The traditional SoftMax activation
function cannot be used to define the credal set, as it cannot ensure the condition in Eq. (2) when
computing [qL, qU ] as qL=SoftMax(aL) and qU =SoftMax(aU ), respectively.

For example, assuming that we have aL :=(−1, 0, 1) and aU :=(0, 1, 3) from CreNet, the qL and
qU computed using SoftMax are:

qL=SoftMax(aL)=(0.0900, 0.2447, 0.6653), qU =SoftMax(aU )=(0.0420, 0.1142, 0.8438).

The resulting ‘probability intervals’ are not properly defined and appear unreasonable, as some lower
bounds are considerably higher than the upper bounds.

Mathematical Proof for Interval SoftMax The proof that Interval SoftMax in Eq. (4) does satisfy
the conditions in Eq. (2) is straightforward:

C∑
i=1

qLi =

C∑
i=1

exp(aLi)∑C
k 6=iexp(

aUk+aLk
2 ) + exp(aLi)

≤
C∑
i=1

exp(
aUi+aLi

2 )∑C
k 6=iexp(

aUk+aLk
2 ) + exp(

aUi+aLi
2 )

=1≤
C∑
i=1

exp(aUi)∑C
k 6=iexp(

aUk+aLk
2 ) + exp(aUi)

=

C∑
i=1

qU i

. (16)

B Additional Experiments

In this section, Appendix §B.1 discusses the implementation and performance of EU quantification
of CreDEs using another uncertainty measure for credal sets: the generalized Hartley measure.
Appendix §B.2 performs an ablation study on the value of the hyperparameter K of the PIDR
Algorithm 2. Appendix §B.3 assessed CreDEs’ performance in the OOD detection task when
quantifying uncertainty using TU instead of EU. Appendices §B.4, §B.5, and §B.6 compare CreDEs
versus traditional DEs that also apply the DRO strategy, DEs that apply the ‘product of experts’
ensemble setting [32], and several BNN baselines, respectively. Appendix §B.7 assessed CreDEs in
an active learning case study.

B.1 Generalized Hartley Measure for EU Quantification of CreDEs

Uncertainty quantification in credal sets merits further investigation. For instance, recent research
[35] has explored, e.g., the use of probability interval length as a measure of epistemic uncertainty,
in the special case of binary classification. However, these measures cannot be readily extended to
multi-class cases. Recently, the most established methods for decomposing the total uncertainty of
credal sets are generalized Entropy [3, 36] and the generalized Hartley Measure [4, 36].

Definition The generalized Hartley measure [4], GH(Q), measures the non-specificity across the
distributions in the credal set, and can be seen as a proxy for its volume [36]. Mathematically, GH(Q)
calculates the expectation of the Hartley measure [26] over all possible subsets B on the target space
Y,2 as follows [4]:

GH(Q) =
∑

B⊆Y mQ(B)·log2(|B|), (17)

in which mQ denotes the mass assignment function associated to Q and |B| indicates the cardinality
of B. mQ(B) can be computed using the Möbius inverse of the capacity function νQ [36], as follows:

mQ(B) =
∑

A⊆B(−1)|B\A|νQ(A), (18)

where B\A = {y|y ∈B and y /∈A} and νQ describes the lower probability of all possible subsets
A ⊆ B.

Efficient Implementation in CreDEs One of the reasons that hinder the application of the Gen-
eralized Hartley Measure is its computational complexity. In our work, we proposed an efficient
implementation and an approximate approach (the PIDR Algorithm 2) for computing it.

2In classification, target space Y comprises a finite set of class labels, namely Y={y1, ..., yC}.

16



In our case, the lower probability νQ(A) associated with the predicted credal set can be readily
computed as follows:

νQ(A)=max

(∑
yj∈A q

∗
Lj
, 1−

∑
yj/∈A q

∗
Uj

)
, (19)

where q∗L and q∗U are the reachable lower and upper probability values per class in the defined credal
set. They can be easily obtained from Eq. (12). Figure 3 illustrates how the lower and upper
probabilities qLi , qUi that determine the credal set Q may differ from the probabilities q∗Li and q∗Ui
actually reachable for each class within Q.

The full GH(Q) calculation process is presented in Algorithm 3.

Algorithm 3 GH(Q) Calculation

Input: [q∗L, q
∗
U ] :={[q∗Li , q

∗
Ui

]}Ci=1; Target space Y
Output: GH(Q)
Initialize: GH(Q)=0
for all B ⊆ Y and |B| ≥ 2 do

Initialize: mQ(B) = 0
for all A ⊆ B do

Compute νQ(A) using Eq. (19)
mQ(B) = mQ(B)+(−1)|B\A| ·νQ(A) (Eq. (18))

end for
GH(Q)=GH(Q)+mQ ·log2(|B|) (Eq. (17))

end for

Although the use of probability intervals simplifies the calculation of GH(Q) in general, a significant
challenge arises for large values of C (e.g. C=100) due to the complexity of involving subsets of C.

However, when applying our proposed PIDR Algorithm 2, the dimension of the probability interval
is reduced from C to K; therefore, calculating GH(Q) requires only 2K subsets.

Experimental Validation of GH(Q) for OOD Detection The OOD detection results for CreDEs-5
using GH(Q) are shown in Tables 7, 8 and in Figure 9. Probability Interval Dimension Reduction
(PIDR) (Algorithm 2) is utilized with settings K=4 and K=10 when computing GH(Q) for dataset
pairs containing CIFAR10 and CIFAR100/ImageNet, respectively. The results verify that

• Our CreDEs consistently enhance the quality of EU quantification, exhibiting robustness
across different uncertainty measures, i.e., the generalized Shannon entropy and the gen-
eralized Hartley measure. This improved EU quantification leads to better OOD detection
performance compared to Deep Ensemble baselines.

• The proposed PIDR algorithm ensures an efficient implementation of the generalized Hartley
measure in our framework. An ablation study on PIDR’s hyperparameter is conducted in
Appendix §B.2.

Note, however, that applying K = 10 for the setting ImageNet vs ImageNet-O does not yield a
better result, due to the coarseness of approximating 1000 classes using only 10. This suggests that
computing GH(Q) is still challenging for tasks involving 1000 or more classes.

B.2 Ablation Study on Hyperparameter of PIDR Algorithm

Effect on GH(Q) Quantification Figure 10 illustrates the influence of various settings of K on
GH(Q) quantification. The average value GH(Q) suggests that the use of the PIDR Algorithm 2)
results in an underestimated GH(Q) value, compared to the result without using PIDR (K = 10).
Consequently, increasing the value of K enhances OOD detection performance. However, as K
grows execution time increases exponentially, due to the iterative calculations of mQ(B) and νQ(A) in
Algorithm 3 across 2K subsets. The time cost is measured on a single Intel Xeon Gold 8358 CPU@2.6
GHz. While higher than the time cost for EU calculation of DEs (4.1e−4 ms), this figure shows that
calculating GH for 10 classes (K= 10 for 17 ms) remains practical without actual computational
constraints. Besides, the numbers reported are for GH calculation without any optimization: a more
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Table 7: OOD detection AUROC and AUPRC performance (%, ↑) between CreDEs-5 and DEs-5
based on ResNet50 using EU as uncertainty metrics on CIFAR10/100 vs. SVHN/Tiny-ImageNet and
ImageNet vs. ImageNet-O. Results are averaged over 15 runs. Best results are in bold.

ID Samples CIFAR10 CIFAR100 ImageNet

OOD Samples SVHN Tiny-ImageNet SVHN Tiny-ImageNet ImageNet-O

Performance Indicator AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

DEs-5 H(q̃)−H̃(q) 89.58±0.93 92.29±1.00 86.87±0.20 83.02±0.16 73.83±1.97 84.96±1.25 78.80±0.20 74.68±0.27 65.03±0.53 62.77±0.38

CreDEs-5 H(Q)−H(Q) 96.55±0.25 98.17±0.17 88.10±0.26 87.85±0.35 78.55±1.15 86.57±0.65 82.54±0.26 77.60±0.44 67.82±0.06 62.80±0.12
(ours) GH(Q) 96.72±0.24 98.25±0.17 89.54±0.16 88.74±0.24 79.23±1.19 87.17±0.66 83.01±0.24 78.95±0.44 63.46±0.06 58.13±0.10

Table 8: AUROC and AUPRC scores (%, ↑) for OOD detection on CIFAR10 vs SVHN/Tiny-
ImageNet. Results averaged over 15 runs. The Best results are in bold.

CIFAR10 vs SVHN CIFAR10 vs Tiny-ImageNet

AUROC AUPRC AUROC AUPRC

DEs-5 H(q̃)−H̃(q) 82.19±0.82 87.52±0.81 78.58±0.15 73.28±0.23

H(Q)−H(Q) 87.68±0.73 93.47±0.57 82.56±0.28 80.81±0.52VGG16 CreDEs-5
(Ours) GH(Q) 86.99±0.72 93.18±0.41 82.23±0.18 80.83±0.24

DEs-5 H(q̃)−H̃(q) 77.71±1.67 88.73±0.32 82.27±0.79 78.85±0.81

H(Q)−H(Q) 88.57±2.08 93.24±1.25 88.73±0.32 87.84±0.52ViT Base CreDEs-5
(Ours) GH(Q) 89.07±1.66 93.32±1.06 89.19±0.42 88.21±0.58

𝐻 ℚ − 𝐻(ℚ)(Ours) GH ℚ (Ours) 𝐻 𝒒+ − 𝐻, 𝒒
VGG16 ViT BaseResNet50

Figure 9: OOD detection on CIFAR10 vs CIFAR10-C against increased corruption intensity, using
ResNet50, VGG16, and ViT Base as backbones.
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Figure 10: Average time cost of GH(Q) (black dotted line) and GH(Q) value per sample across
various datasets (blue lines), along with the AUROC/AUPRC scores (green/purple lines) for OOD
detection versus increasing values of K.

efficient code implementation could significantly reduce the cost. The effect of various settings of K
on H(Q) is shown as follows.

Effect on TU Quantification In this experiment, we examine the effect of K on TU estimation.
Figure 11 shows the average values of TU estimates (H(Q)) sample, together with the AUROC and
AUPRC scores for CIFAR100 vs. SVHN/Tiny-ImageNet. The results indicate that applying PIDR
(Algorithm 2) tends to underestimate TU values. Consequently, increasing the value of K improves
the OOD detection performance, but it also leads to an increase in execution time. This is because
solving the constrained optimization problem in Eq. (13) involves more variables and constraints.

The reported time cost is measured on a single Intel Xeon Gold 8358 CPU@2.6 GHz, without
optimization in the calculation process. We believe a more efficient code implementation could
significantly mitigate this.

Figure 11: AverageH(Q) time cost, average H(Q) value per sample, and OOD performance on the
OOD detection benchmark (CIFAR100 vs. SVHN/Tiny-ImageNet) for increasing values of K.

B.3 Total Uncertainty Estimation Evaluation via OOD Detection

In further additional experiments, we also assess the quality of the total uncertainty (TU) estimates
produced by CreDEs-5 on the various OOD detection benchmarks [43, 54]. The results in Tables
9 and 10 consistently demonstrate CreDEs’ improved OOD detection performance using TU as a
metric.

B.4 Comparison between CreDEs and DEs with DRO Strategy

In this experiment, we additionally train 15 ResNet50-based SNNs on the CIFAR10 and CIFAR100
datasets using the DRO loss component and the same training strategy as in Algorithm 1, respectively.
For a fair comparison, we set δ = 0.5 (just as for CreNets), using the same random seeds and training
epochs. Other training configurations are described in Appendix §C. We named the resulting deep
ensembles with 5 ensemble members as DEs*-5.
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Table 9: OOD detection AUROC and AUPRC performance (%, ↑) between CreDEs-5 and DEs-5
based on ResNet50 using TU as uncertainty metrics on CIFAR10/100 vs. SVHN/Tiny-ImageNet and
ImageNet vs. ImageNet-O. Results are averaged over 15 runs. Best results in bold.

ID Samples CIFAR10 CIFAR100 ImageNet

OOD Samples SVHN Tiny-ImageNet SVHN Tiny-ImageNet ImageNet-O

Performance Indicator AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

DEs-5 H(q̃) 94.80±0.43 97.26±0.29 88.80±0.19 87.21±0.29 78.53±1.94 88.83±1.01 80.75±0.15 77.65±0.19 50.20±0.07 50.43±0.06
CreDEs-5 H(Q) 95.71±0.42 97.73±0.27 89.02±0.10 88.02±0.15 79.44±1.45 88.10±0.79 83.49±0.17 80.61±0.33 67.56±0.06 62.79±0.18

Table 10: OOD detection AUROC and AUPRC performance (%, ↑) between CreDEs-5 and DEs-5
based on VGG16 and ViT Base using TU as uncertainty metrics on CIFAR10 vs. SVHN/Tiny-
ImageNet. Results are averaged over 15 runs. Best results in bold.

VGG16 ViT Base

SVHN (OOD) Tiny-ImageNet (OOD) SVHN (OOD) Tiny-ImageNet (OOD)

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

DEs-5 H(q̃) 84.50±0.49 90.78±0.35 79.40±0.10 75.91±0.14 79.80±1.75 87.97±1.17 83.81±0.81 81.68±0.89
CreDEs-5 H(Q) 87.05±0.80 93.36±0.42 82.14±0.14 80.81±0.16 87.30±1.77 92.24±1.15 88.17±0.44 86.94±0.60

We compare test accuracy and ECE for DEs*-5 and CreDEs-5 in Table 11, and their OOD detection
performance on the CIFAR10/100 (ID) vs SVHN/Tiny-ImageNet (OOD) benchmark in Table 12.

Table 11: Test accuracy and ECE of DEs*-5 and CreDEs-5 on the CIFAR10 and CIFAR100 datasets.
Best results in bold.

CIFAR10 CIFAR100

Test Accuracy ECE Test Accuracy ECE

DEs*-5 91.53±0.22 0.0159±0.0019 68.34±0.52 0.0372±0.0033

CreDEs-5 îmin 93.75±0.11 0.0092±0.0016 79.54±0.21 0.0366±0.0025
îmax 93.74±0.11 0.0108±0.0017 79.65±0.19 0.0268±0.0023

Table 12: OOD detection performance comparison of DEs*-5 and CreDEs-5 using the dataset pairs
CIFAR10/100 (ID) vs SVHN/Tiny-ImageNet (OOD).

CIFAR10 (ID) CIFAR100 (ID)

SVHN (OOD) Tiny-ImageNet (OOD) SVHN (OOD) Tiny-ImageNet (OOD)
AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

TU DEs*-5:H(q̃) 91.82±0.96 95.13±0.70 86.26±0.30 84.09±0.42 78.70±1.61 88.20±0.91 76.99±0.28 73.03±0.37
CreDEs-5:H(Q) 95.71±0.42 97.73±0.27 89.02±0.10 88.02±0.15 79.44±1.45 88.10±0.17 83.49±0.17 80.61±0.33

EU
DEs*-5:H(q̃)−H̃(q) 87.21±1.49 91.09±1.39 84.58±0.30 80.80±0.42 74.38±1.39 84.67±0.86 75.27±0.38 70.80±0.48

CreDEs-5:H(Q)−H(Q) 96.55±0.25 98.17±0.17 88.10±0.26 87.85±0.35 78.55±1.15 86.57±0.65 82.54±0.26 77.60±0.44
CreDEs-5:GH(Q) 96.72±0.24 98.25±0.17 89.54±0.16 88.74±0.24 79.23±1.19 87.17±0.66 83.01±0.24 78.95±0.44

The reported results demonstrate that CreDEs-5 outperforms DEs*-5 ensembles by achieving higher
test accuracy and lower ECE values. Concerning OOD detection tasks, it can be found that CreDEs in
general improve the AUPRC and AUROC scores using either the TU or the EU metric, pretty much
across the board. These results suggest that CreDEs provide higher-quality EU and TU estimation.

In Table 12, a 0.1% drop in AUPRC using the TU metric can be observed. However, remember that
CreDEs calculate TU (using the upper entropy) by solving a constrained optimization problem in Eq.
(13) using a numerical solver from SciPy. The slight performance decrease is likely due to numerical
errors during the optimization process.

B.5 Comparison between CreDEs and DEs with POE Ensemble Setting

In this experiment, we conduct a comparison between our CreDEs and DEs with the ‘product of
experts’ (POE) [32] ensemble setting, as opposed to the more commonly employed ‘mixture of
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experts’ approach in our primary analysis. Here, DEsp-5 denotes the deep ensembles that process
the final predictions from the ensemble members using the POE strategy. The experimental setup
mirrors that used by OOD detection benchmarks, involving data pairs CIFAR10 (ID) vs SVHN/Tiny-
ImageNet (OOD).

Table 13 shows that DEsp-5 could improve test accuracy but significantly reduce the calibration
performance of DEs-5 (larger ECE values). Among these comparisons, CreDEs-5 emerged as
the most superior method. Furthermore, we evaluate the uncertainty estimation through the OOD
detection benchmark. Specifically, =the entropy of the final prediction of DEsp-5 is calculated to
quantify the total uncertainty. For CreDEs-5 and DEs-5, we use the upper entropy, H(Q), and H(q̃),
respectively. The results in Table 14 consistently demonstrate the superior performance of our method.
Although the POE strategy improves the test accuracy of classical DEs, it significantly degrades
calibration performance and leads to inferior OOD detection performance.

Table 13: Test accuracy (ACC) (%) and ECE comparison on the CIFAR10 dataset, using the ResNet50,
VGG16, and ViT Base architectures.

ResNet50 VGG16 ViT Base

ACC ECE ACC ECE ACC ECE

CreDEs-5 (̂imax) 93.74±0.11 0.0109±0.0017 87.92±0.11 0.0611±0.0012 93.59±0.39 0.0104±0.0012
CreDEs-5 (̂imin) 93.75±0.11 0.0092±0.0016 87.94±0.11 0.0203±0.0014 93.60±0.40 0.0107±0.0014

DEs-5 93.32±0.13 0.0131±0.0010 85.53±0.10 0.0815±0.0011 90.43±0.97 0.0181±0.0019
DEsp-5 93.47±0.11 0.0610±0.0011 85.55±0.08 0.1368±0.0008 90.56±0.90 0.0894±0.0087

Table 14: OOD detection performance comparison (%) on CIFAR10 vs SVHN/Tiny-ImageNet, using
the ResNet50, VGG16, and ViT Base architectures.

ResNet50 VGG16 ViT Base

SVHN Tiny-ImageNet SVHN Tiny-ImageNet SVHN Tiny-ImageNet

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

CreDEs-5 95.71±0.42 97.73±0.27 89.02±0.10 88.02±0.15 87.05±0.80 93.36±0.42 82.14±0.14 80.81±0.16 87.30±1.77 92.24±1.15 88.17±0.44 86.94±0.60
DEs-5 94.80±0.43 97.26±0.29 88.80±0.19 87.21±0.29 84.50±0.49 90.78±0.35 79.40±0.10 75.91±0.14 79.80±1.75 87.97±1.17 83.81±0.81 81.67±0.89

DEsp-5 93.90±0.24 96.10±0.21 88.03±0.20 84.11±0.32 84.10±0.22 89.83±0.16 78.11±0.08 72.23±0.16 82.41±1.56 88.51±0.95 83.21±1.02 78.24±1.17

B.6 Comparison between CreDEs and Bayesian Neural Networks

As discussed in the main body, the main reason for excluding Bayesian neural network (BNN)
approaches in our main evaluation is that they generally have difficulty scaling to large datasets
and complex network architectures [54]. In this section, we conducted an additional comparison
between CreDEs and DEs, MCDropout [22], and two TensorFlow-standardized BNNs (BNN-R [51]
and BNN-F [76]). All the models are trained on the ResNet50 for the CIFAR10 dataset from scratch.
The input data shape is (32, 32, 3). The Adam optimizer is applied with a learning rate scheduler,
initialized at 0.001. The learning rate is subject to a reduction of 0.1 at epochs 80 and 120. For BNNs,
10 forward passes are used for uncertainty estimation.

The uncertainty evaluation via OOD detection on the CIFAR10 vs SVHN/Tiny-ImageNet dataset
is reported in Table 15. The results consistently demonstrate the significant improvements of our
CreDEs.

B.7 Case Study on Active Learning Settings

Active learning (AL) aims to efficiently train models with minimal data by acquiring additional
samples from a vast pool of unlabeled data, which are then labeled by experts [11]. After each
acquisition step, the model is retrained using the expanded training set. The iterative process
continues until either the desired accuracy or the maximum allowable acquired samples are reached.
Efficient data acquisition can be a reliable estimate of the uncertainty of models [23, 54].

Setup We deploy CreDEs-5 (δ=0.5) and DEs-5 (baseline) using the ResNet18 architecture and utiliz-
ing clean MNIST samples in the pool set. TU and EU estimations from each approach for the acquisi-
tion functions are utilized. We begin with an initial training set of 20 randomly selected MNIST points.
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Table 15: OOD detection AUROC and AUPRC performance (%, ↑) between CreDEs-5 and Bayesian
models based on ResNet50 using EU and TU as uncertainty metrics on CIFAR10 vs. SVHN/Tiny-
ImageNet. Results are averaged over 15 runs. The best results are in bold. The ‘drop’ denotes the
dropout rate applied to MCDropout.

Model Epistemic Uncertainty Measure as Metric Total Uncertainty Measure as Metric

SVHN (OOD) Tiny-ImageNet (OOD) SVHN (OOD) Tiny-ImageNet (OOD)

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

CreDEs-5 79.14±1.49 86.84±1.18 82.85±0.29 80.71±0.42 81.00±0.75 88.66±0.46 84.06±0.11 82.16±0.13

DEs-5 73.53±1.65 83.81±1.42 76.13±0.58 70.86±0.67 77.93±0.65 84.92±0.39 80.22±0.26 76.94±0.30

BNN-R 70.30±3.55 82.41±2.45 72.91±2.01 67.82±2.10 73.37±2.00 82.69±1.58 73.98±1.85 70.52±1.89

BNN-F 70.15±4.38 82.04±3.01 73.66±1.46 68.52±1.53 73.77±2.62 82.90±1.71 74.57±1.30 71.11±1.29

MCDropout 0.1 drop 74.19±1.55 82.93±1.01 75.04±0.77 68.25±1.31 76.92±1.85 85.93±1.22 77.48±0.56 73.63±0.62

0.4 drop 61.66±1.89 73.47±1.27 67.24±1.36 59.55±1.41 79.25±0.96 86.04±0.77 76.04±0.57 72.73±0.65

EUcre: 𝐻 ℚ − 𝐻(ℚ)

TUcre: 𝐻 ℚ

TUde: 𝐻'(𝒒)

EUcre:GH ℚ

EUde: 𝐻' 𝒒 − 𝐻(𝒒))

MNIST Dirty MNIST (𝛿 = 0.5) Dirty MNIST (𝛿 = 0.625) Dirty MNIST (𝛿 = 0.75) Dirty MNIST (𝛿 = 0.875)

Figure 12: AL experiments us-
ing different acquisition functions.
Achieved test accuracy vs. acquired
training set size.

In each iteration, we acquire the 5 samples with the highest
reported uncertainty estimates (EU or TU per model). After
each step, we train models using the Adam optimizer for 20
epochs and select the one with the best accuracy from the
validation set. AL process stops when the training set size
reaches 150.

Results Figure 12 shows the result comparison between
CreDEs-5 and DEs-5 using TU and EU estimates as the
acquisition functions per model. In the evaluation using
MNIST, aiming for a 90% accuracy or a maximum sample
count of 150, CreDEs-5 employing acquisition functions
TU (H(Q)) and EU (GH(Q)), demonstrates superior per-
formance compared to DEs-5 using TU (H(q̃)). In addition,
CreDEs-5 with EU (H(Q)−H(Q)) outperforms DEs-5
with EU (H(q̃)−H̃(q)). The additional evidence verifies
the improved quality of EU and TU estimation of CreDEs,
compared to DEs. In future work, we aim to explore the
potential integration of our methods into other active learn-
ing benchmarks [70] and real-world applications or further
improve on them.

C Experiment Implementation Details

For the main experiments on the ResNet50 backbone, we used two Tesla P100-SXM2-16GB GPUs
as devices to independently train 15 SNNs and CreNets using CIFAR10 and CIFAR100 datasets. The
input shape of both networks was (224, 224, 3). We employed the Adam optimizer, with a learning
rate scheduler set at 0.001 and reduced to 0.0001 during the last five training epochs.

Figure 13 shows the averaged training and validation accuracy for training process monitoring.

In the ImageNet experiments, we employed three NVIDIA A100-SXM4-80GB GPUs. To create
deep ensembles, we independently retrained 15 deep SNNs based on a pre-trained ResNet50 model
for 3 epochs, using the Adam optimizer with an initialized learning rate of 1e−6. For CreDEs,
we initialized CreNet weights using a pre-trained ResNet50 model and independently retrained 15
CreNet models for 5 epochs, using the Adam optimizer with an initialized learning rate of 1e−5. The
choice of a larger learning rate value and epoch count for CreNets is a consequence of their modified
final later compared to SNNs. For the ablation study on various network architectures, we again
utilized two Tesla P100-SXM2-16GB GPUs and one NVIDIA A100-SXM4-80GB GPU as devices to
independently train 15 SNNs and CreNets, based on VGG16 and ViT Base architectures, respectively,
and using the CIFAR10 dataset. VGG16-based SNNs and CreNets were trained for 20 epochs. SNNs
and CreNets using the ViT Base backbone were trained for 25 and 40 epochs, respectively. The input
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Figure 13: Averaged training and validation (Val) accuracy (%) for CreNets and SNNs over 15 runs.
The U and L in the labels of CreNets represent accuracies associated with upper and lower probability
bounds, namely îmax and îmin, respectively.

shape for both networks was set to (224, 224, 3). For optimization, we employed the Adam optimizer
with a learning rate scheduler initialized at 0.001 and reduced to 0.0001 during the final 5 training
epochs.

Training Complexity We did not include the report of training time complexity in the main paper as
CreNets use a custom training loop, unlike the TensorFlow-standardized training of standard neural
networks (SNNs), precluding a fair comparison.

Nevertheless, we did train a single CreNet and a single SNN based on the ResNet50 architecture
on the CIFAR10 dataset, from scratch and on a single A100 GPU. The training time per epoch
is 16.36s for the SNN and 73.77s for CreNet, respectively. Given the evidence that CreNets only
marginally increases the inference time (single forward pass), we are optimistic that by standardizing
and optimizing the customized training loop and adopting a more efficient code implementation of
Algorithm 1, we could significantly reduce the training load.

Further Discussion on Inference Complexity As we discussed previously, regarding inference
time, doubling the final layer nodes would slightly increase the inference time. For instance, the
inference time per sample for a ResNet50 architecture on the ImageNet dataset is 5.5 ms for a
single standard neural network, vs 5.7 ms for a single CreNet (a marginal increase). The inference
cost on the CIFAR10/100 dataset reported in Table 16 further demonstrates a slight increase in
inference complexity in our method. Moreover, Table 17 presents the inference cost, evaluated on a
single AMD EPYC 7643 48-core CPU. The results indicate no significant overhead of our CreDEs
and also demonstrate that employing VGG16, a lighter model architecture compared to ResNet50,
substantially reduces the inference cost for both DEs and CreDEs.

Table 16: Complexity comparison between ResNet50-based SNNs and CreNets using CIFAR10/100
datasets. The inference cost per dataset is measured by a single NVIDIA P100 SXM2-16GB GPU
for both models.

Dataset Model Parameters (million) Inference time per sample (ms)

CIFAR10 SNNs vs CreNets 26.216 vs 26.221 60.6±0.7 vs 63.0±1.1
CIFAR100 SNNs vs CreNets 26.262 vs 26.314 62.5±0.5 vs 63.1±0.7

Table 17: Inference cost comparison on CPU between SNNs and CreNets per single CIFAR10 input
of different architectures.

VGG16 (ms) ResNet50 (ms)

SNNs vs CreNets 19.2±3.8 vs 23.1±5.2 148.2±49.0 vs 163.3±39.4

Regarding the uncertainty estimation cost, we report the cost of calculating the Generalized Hartley
(GH) measure and the upper entropy in Figures 10 and 11, respectively. For example, the time
cost for GH calculation for CIFAR10 without approximation is 17 ms (0.02 ms in the reduced case
considering 4 out of 10 classes) while calculating the EU in deep ensembles for CIFAR10 takes
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1×10−4ms, measured on the same single CPU. Though higher CreDEs remain practical without
actual computational constraints. In addition, the reported numbers are without code efficiency
optimization: a more efficient code implementation could significantly reduce the cost.

The practical takeaway here is that, as demonstrated by extensive experimental variation, our CreDEs
exhibit strong potential to enhance the uncertainty quantification performance of DEs in real-world
applications, with only a modest increase in computational complexity. However, if DEs are already
deemed impractical due to computational limitations, our CreDEs would not be a suitable alternative.

D Discussions on Ensemble Approaches

D.1 Rationale for Averaging Ensemble Strategy

The randomness of parameter initialization in neural networks is one of the reasons leading to
(epistemic) uncertainty about the ‘ground-truth’ model. As we gather more information, both
epistemic and total uncertainty should decrease. For example, if we assume that we can train an
infinite number of standard neural networks, then the Deep Ensembles would eliminate the source of
ignorance caused by the randomness of parameter initialization.

Our proposed averaging approach to creating an ensemble of CreNets follows a similar rationale.
Specifically, if we aggregate an infinite number of ensemble members, the uncertainty caused by the
randomness would vanish. The outputted probability interval of CreDEs, primarily acknowledges the
lack of precise insights into the divergence between the training and test distributions.

D.2 Possible Alternative Ensemble Approaches

CreDEs aggregate predictions from multiple individually trained CreNets, producing credal sets
based on probability intervals. In addition to averaging, two alternative approaches, namely union
(disjunctive combination) and intersection (conjunctive combination) [17], can be envisaged.

These alternative methods are illustrated in Figure 14.

(a) (b) (c)

Figure 14: Representation of three ensemble approaches: averaging (a), union (b), and intersection
(c). In each subfigure, the ultimate credal set (highlighted in dark red) is formed by aggregating two
individual credal sets, each constrained by probability intervals indicated in light green and blue,
respectively.

Averaging CreDEs average the upper and lower probabilities per class from M individually-trained
CreNets and predict the aggregated probability intervals, denoted as [q̃∗L, q̃

∗
U ], as discussed in Eq.

(14). It can be proved that [q̃∗L, q̃
∗
U ] is guaranteed to generate a non-empty credal set, as follows:∑C

i=1 q̃
∗
Li

= 1
M

∑M
m=1

∑C
i=1 q

∗
Lmi
≤1≤ 1

M

∑M
m=1

∑C
i=1 q

∗
Umi

=
∑C
i=1 q̃

∗
Ui . (20)

The semantic behind averaging is that we equally trust all pieces of information (individual credal
sets) without judging the authenticity of the information. Similar to traditional deep ensembles (DEs),
the averaging ensemble approach can alleviate the influence of training process randomness.

Union Given a collection of convex probability intervals, denoted as {[q∗Lm , q
∗
Um

]}Mm=1, De Campos
et al. have proposed the computationally efficient way to calculating the union of credal sets [17], as
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follows:
q̃∗Li = min

m∈{1,...,M}
q∗Lmi

, q̃∗Ui = max
m∈{1,...,M}

q∗Umi . (21)

The union ensemble method implies that at least one piece of information is considered to be true.
The union operation in Eq. (21) has a significant limitation, as it results in an expanded credal set and
introduces an overestimation effect on the precise union of credal sets, as shown in Figure 14.

Intersection A collection of convex probability intervals {[q∗Lm , q
∗
Um

]}Mm=1 can formulate an
intersection as

q̃∗Li = max
m∈{1,...,M}

q∗Lmi
, q̃∗Ui = min

m∈{1,...,M}
q∗Umi . (22)

However, the obtained [q̃∗L, q̃
∗
U ] does not inherently satisfy the condition outlined in Eq. (2) for

constructing a credal set [17]. Therefore, the intersection approach is not applicable in CreDEs.

Empirical evaluation In this experiment, we mainly evaluate the impact of averaging and union
ensemble approaches on the EU estimation (GH(Q)) of CreDEs. Utilizing 15 individually trained
ResNet50-based CreNets on CIFAR10 dataset, we formulate 15 CreDEs-M by varying the ensemble
number M from 2 to 10 through averaging and union ensemble methodologies. Each kind of CreDEs-
M is assessed for the averaged GH(Q) concerning samples and the quantity of CreDEs-M, and the
averaged standard deviation (STD) of GH(Q) related to samples and the quantity of CreDEs-M. The
results are plotted in Figure 15 (b) and (a), respectively. Besides, we also present the AUPRC and
AUROC scores of OOD detection using GH(Q) as the uncertainty metric in Figure 15 (c) and (d),
accordingly.

(a) (b)

(c) (d)

O
O
D
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Figure 15: Impact of averaging (Avg) and union on the EU estimation of CreDEs on OOD detection
benchmark involving CIFAR10 vs. SVHN/Tiny-ImageNet (TinyImage), implemented on ResNet50
architecture.

Figure 15 (a) illustrates a reduction in the averaged standard deviation (STD) of GH(Q) estimates
as the number of ensemble members increases. This suggests that averaging the ensemble helps
mitigate the uncertainty resulting from the randomness in the CreNet training process. Consequently,
the AUROC and AUPRC scores, shown in Figure 15 (c) and (d), exhibit enhancement through the
utilization of the averaging ensemble approach, accompanied by a concurrent reduction in the STDs
of the scores as the number of ensemble members increases. In contrast, Figure 15 (b) highlights
the overestimation of EU across various datasets when employing the union ensemble method.
While the average EU estimates for ID samples are overall lower than those for OOD instances,
the overestimation may lead to OOD mis-detection in some specific samples. This explains the
“fluctuations” in the associated AUPRC and AUROC score curves in Figure 15.
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E Further Discussion on Future work

E.1 Generalizing Cross-Entropy for Lower/Upper Probability

As stated in Sec. 2.2.2, calculating the cross-entropy (CE) loss for the lower and upper probability
works due to the ‘one-hot’ labeling nature of the ground truth vector t. However, generalizing the
CE, which corresponds to the Kulback Leibler (KL) divergence

DKL(t|q) =
∑

j=1,...,C

t(j) log

(
t(j)

q(j)

)
between a predicted probability vector q and the general ground truth vector t, to lower/upper
probabilities is still an open research subject [68, 69].

In our case, the credal set Q is defined by the outputted proper probability intervals [qL, qU ].
Therefore, the KL divergence for a lower probability inducing a credal set may be calculated by:

• Finding the probability vector that best approximates it. For probability intervals, there are
two established such ways: normalizing either the lower or the upper probability (see [74])
or computing the so-called ‘intersection probability’ (see [15]).

• Computing the KL divergence between the ground truth vector and the approximation
obtained.

In future work, we aim to investigate the approach and compare those other well-founded methods
for calculating the cross-entropy loss with the one used in the paper.

E.2 Theoretical Coverage Guarantees

In the current stage, our CreNets do not provide coverage guarantees, e.g., on how likely it is for
the divergence of future data distributions to be within the modeled bounds. Nevertheless, various
approaches to incorporating statistical guarantees in our framework can be envisaged.

In particular, a CreDE, being a classifier, can be employed as the ‘underlying model’ in an inductive
conformal learning framework [64], which builds an empirical cumulative distribution of the ‘non-
conformity’ scores of a set of calibration samples and at test time outputs the set of labels whose
empirical CDF is above a desired significance level ε (e.g., 90%).

Namely, given a test input x and the associated predictive system of probability intervals
[qLc , qUc ], c = 1, ..., C (the output of CreDE), a sensible choice, for instance, is to set as non-
conformity score of a pair (test input, class), (x, c), the complement of the upper probability for that
class, given input x:

s(x, c)
.
= 1− qUc

(i.e., a label c would be considered ’non-conformal’ if its predicted upper probability, for that input x,
is low), and compute predictive regions as standard in conformal learning:

Γ(x) = c ∈ C : pc > ε,

where

pc =
|(xj , cj) : s(xj , cj) > s(x, c)|

q + 1
+ u · |(xj , cj) : s(xj , cj) = s(x, c)|

q + 1
,

(xj , cj) is the j-th calibration point, q is the number of calibration points, and u ∼ U(0, 1) (the
uniform distribution on the interval (0, 1)).

We plan to explore this integration as the next step of our future work.

E.3 Extension for Regression Framework

The vast majority of papers using credal sets in machine learning focus on classification [12, 5, 78],
or, more recently, on self-supervised learning (but still in a classification setting [37]). Nevertheless, a
recent study [19] has shown that the formalism of belief functions (a special class of credal sets) can
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be extended to regression, by leveraging random fuzzy sets. It might thus be possible to explore such
connections between probability intervals and random fuzzy sets and devise a suitable regression
framework based on CreDEs.

The following section outlines a more direct possible extension of CreDEs to regression problems as
a future research direction.

Remember that a CreNet outputs a credal set on the simplex of probability distributions over the
classes. Each vertex of this credal set is therefore a probability distribution over the target space (the
set of classes C for classification).

On the other hand, a Bayesian regressor network (trained to learn a distribution of its weights) would
output a (continuous) probability density over the target space (for the sake of simplicity, assume
Y = R).

One could then train an ensemble of Bayesian regressor networks to predict a credal set with a fixed
number of vertices (one network outputting one vertex probability) so that the final predicted credal
set is the convex closure of those. Figure 16 illustrates the concept briefly.

Figure 16: Concept of a credal regressor.

The Distributionally Robust Optimization (DRO) framework employed for CreDE training is to
model the divergence between the data distribution of samples belonging to G different groups within
the training set. A full DRO formulation with G loss components, in combination with Bayesian
deep learning techniques such as variational inference, could then be employed to drive the training
of the G credal vertex networks, encouraged to generate diverse (probabilistic) predictions to model
different possible data distributions, in a generalization of the two-component loss used here.

Broader Impacts

The main objective of this paper is to advance the field of Machine Learning by improving the
quality of uncertainty quantification. There are many potential societal consequences of our work,
none of which we feel must be specifically highlighted here. The proposed method demonstrates
superior performance in detecting out-of-distribution (OOD) samples. Such capability can potentially
safeguard end users from misguided decisions that stem from the incorrect predictions of neural
networks on OOD instances. Therefore, our approach can potentially improve the safety, reliability,
and trustworthiness of machine learning systems for classification tasks and be applied in mission-
critical domains, such as autonomous driving and medical sciences.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect our
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in the Conclusion Section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide the relevant mathematical proofs in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe the experiments in the main body and detail the implementation
in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We use open-source datasets with references for the evaluation. All code is
provided in the supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all such experimental details in the Appendix. Ablation studies of
hyperparameters are performed.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The main results are computed from 15 runs. Error bars are provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide all information about the computational resources needed in the
Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conforms with the Code Of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts of our work in the Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper focuses on uncertainty quantification in classification tasks and is
evaluated on existing benchmarks. The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use open-source datasets with references for the experimental evaluation.
We have cited all the datasets and models used in this paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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